Calcul intégral

Fiche 1 : Intégrales et primitives

Exercice 1 On considère une fonction $f: [-4,5] \to \mathbb{R}$ dont la courbe représentative, dans le repère orthonormé usuel, est constituée de deux segments de droites ; le premier joignant les points (-4,-2) et (1,3) et le second les points (1,3) et (5,2).

- 1. Tracer le graphe de f.
- 2. Calculer les valeurs des intégrales suivantes

$$\int_{-4}^{0} f(x) dx, \quad \int_{-2}^{0} f(x) dx, \quad \int_{-1}^{3} f(x) dx, \quad \int_{-2}^{5} f(x) dx.$$

Exercice 2 1. Déterminer $\int_{-3}^{5} |x| dx$.

2. Soit f une fonction affine que l'on suppose positive sur [-3; 5], telle que

$$\int_{-3}^{5} f(x) dx = 24 \text{ et } \int_{1}^{5} f(x) dx = 14.$$

Donner une expression de f(x) pour tout réel x.

Exercice 3 Calculer les intégrales suivantes :

1.
$$\int_3^{14} \frac{1}{x} dx$$
, $\int_1^9 \frac{3}{2\sqrt{x}} dx$.

2.
$$\int_{-2}^{4} (x^2 + 3x + 4) dx$$
, $\int_{-1}^{1} (x^4 - x^2 + x - 1) dx$, $\int_{-2}^{2} (8x^5 + 5x^3 + 2x) dx$.

3.
$$\int_0^1 e^{2x} dx$$
, $\int_0^{10} e^{-5x} dx$, $\int_0^1 \frac{1}{1+x} dx$.

4.
$$\int_0^2 (x+1)(x+2) dx$$
, $\int_1^2 \frac{x+1}{x^3} dx$, $\int_3^7 \frac{1}{x^2} dx$.

5.
$$\int_{-2}^{4} x e^{x^2} dx$$
, $\int_{2}^{e} \frac{1}{x \ln(x)} dx$, $\int_{1}^{3} \frac{e^{\frac{1}{x}}}{x^2} dx$.

Exercice 4 On considère la fonction f définie pour tout réel x par

$$f(x) = \begin{cases} x^2 + x & \text{si } x < -1\\ 2x^3 - x + 1 & \text{si } x \ge -1 \end{cases}$$

Vérifier que f est continue sur [-4,1] puis calculer $\int_{-4}^{1} f(t), dt$.

Exercice 5 Déterminer la valeur de $\int_0^1 \frac{1}{1+e^x} dx$ en utilisant celle de $\int_0^1 \frac{e^x}{1+e^x} dx + \int_0^1 \frac{1}{1+e^x} dx$.

Exercice 6 Pour tout entier naturel n, on pose

$$u_n = \int_0^n e^{-x^2} dx.$$

- 1. Montrer que la suite (u_n) est croissante.
- 2. Montrer que pour tout réel $x \ge 0$, on a $-x^2 \le -2x+1$ et que $e^{-x^2} \le e^{-2x+1}$.
- 3. En déduire que pour tout entier naturel n , $u_n \leq \frac{e}{2}.$
- 4. En déduire que la suite (u_n) converge.

Exercice 7 Déterminer toutes les primitives des fonctions suivantes, sur un intervalle bien choisi :

1.
$$f_1(x) = 2\cos(x) - 3\sin(x)$$
, $f_2(x) = 10 - 3e^x + x$, $f_3(x) = \frac{5}{\sqrt{x}} + \frac{4}{x} + \frac{2}{x^2} + \frac{2}{x^3}$

2.
$$f_4(x) = \cos(3x + \frac{\pi}{3}), f_5(x) = \sin(2x), f_6(x) = (2x+1)^2,$$

3.
$$f_7(x) = \cos(x)\sin^2(x)$$
, $f_8(x) = \frac{1}{x\ln(x)}$, $f_9(x) = 3x\sqrt{1+x^2}$.

Exercice 8 Déterminer toutes les primitives des fonctions suivantes sur les intervalles proposés :

1.
$$g_1(x) = \frac{1-x^2}{(x^3-3x+2)^3}, I =]-\infty, -2[,$$

2.
$$g_2(x) = \frac{x-1}{\sqrt{x(x-2)}}, I =]-\infty, 0[,$$

3.
$$g_3(x) = \frac{1}{x \ln(x^2)}$$
, $I =]1, +\infty[$.